Comparison of Microwave and Hot Water Pasteurization of Green Beans (Phaseolus vulgaris L.)

Zhi Qua, Zhongwei Tanga, Fang Liua, Juming Tangb, a

a Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA

INTRODUCTION

- Novel thermal processing technologies have been developed to reduce quality losses in production of pasteurized foods. Storage temperatures play a vital role in maintaining safety and quality of pasteurized food.
- Microwave technology has shown advantages over hot water heating:
 - Volumetric heating
 - Improved heating uniformity
 - High energy conversion rate
- 915 MHz semi-continuous Microwave-Assisted Pasteurization System (MAPS) developed at Washington State University for thermal processing.

METHODS

- 226 g green beans sealed in trays.
- Thermal processing target lethality: F10 = 10 min (a 6-log reduction of non-proteolytic Clostridium botulinum).

RESULTS AND DISCUSSION

- **Thermal processing**
 - Heating rate: 1.6 vs 8.4 °C/min (HW vs MAPS)
 - **Quality after thermal processing**
 - Significant less quality loss after MAPS processing

- **Quality degradation during storage**
 - **Aerobic mesophilic bacteria count**
 - Spoilage bacteria: Paenibacillus spp., Bacillus spp.
 - Time to spoilage (table) 10°C 7°C 2°C
 - MAPS 21 d 42 d 100 d
 - HW 17 d 35 d 80 d

- **Chlorophyll and greenness (a*) (e.g. 10°C storage)**
 - Degradation rate (MAPS vs HW): chlorophyll a: 0.123 vs 0.137
 - a*: 0.149 vs 0.173
 - Correlation: r=-0.958, p<0.01

- **Ascorbic acid**
 - Microwave processed samples have higher ascorbic acid retention

CONCLUSIONS

- Microwave processing caused less degradation in chlorophyll a, greenness, and ascorbic acid;
- Lower storage temperature could delay spoilage and quality losses;
- Microwave processed green beans showed slower spoilage and better preservation of quality attributes during storage;
- This study suggests that microwave pasteurization is a potential alternative to produce safe, high-quality vegetable products that preserve their quality during storage.

ACKNOWLEDGMENT

This research is supported by USDA AFRI (2016-68003-24840).